Tuesday, June 30, 2020

4 Ways to do Pagination or scrolling in Elastic Search Tutorials

ELK

Elastic Search Tutorials

4 Ways to do Pagination or scrolling in Elastic Search Tutorials

Method 1:

Step 1:

In [1]:
try:
    import os
    import sys
    
    import elasticsearch
    from elasticsearch import Elasticsearch 
    import pandas as pd
    
    print("All Modules Loaded ! ")
except Exception as e:
    print("Some Modules are Missing {}".format(e))
    
All Modules Loaded ! 

Step 2:

In [2]:
def connect_elasticsearch():
    es = None
    es = Elasticsearch([{'host': 'localhost', 'port': 9200}])
    if es.ping():
        print('Yupiee  Connected ')
    else:
        print('Awww it could not connect!')
    return es
es = connect_elasticsearch()
Yupiee  Connected 

Step 3: Define Query

In [3]:
myquey = {
   "_source": [],
   "size": 10,
   "query": {
      "bool": {
         "must": [],
         "filter": [
            {
               "exists": {
                  "field": "director"
               }
            }
         ],
         "should": [
            {
               "match_phrase": {
                  "director": "Richard "
               }
            }
         ],
         "must_not": []
      }
   }
}

Step 4:

  • index -> name of the index name
  • Scroll -> How long you want the scroll to stay in his case 2m
  • Size -> How many records you need in each cycle
  • Body-> ELK Query
In [4]:
res = es.search(
  index = 'netflix',
  scroll = '2m',
  size = 10,
  body = myquey)
In [5]:
counter = 0 
sid =  res["_scroll_id"]
scroll_size = res['hits']['total']
scroll_size = scroll_size['value']


# Start scrolling
while (scroll_size > 0):

    #print("Scrolling...")
    page = es.scroll(scroll_id = sid, scroll = '10m')
    
    #print("Hits : ",len(page["hits"]["hits"]))
    
    # Update the scroll ID
    sid = page['_scroll_id']

    # Get the number of results that we returned in the last scroll
    scroll_size = len(page['hits']['hits'])

    #print("Scroll Size {} ".format(scroll_size))
    
    # Do something with the obtained page
    counter = counter + 1

print("Total Pages  : {}".format(counter))
    
Total Pages  : 427

Method 2:

  • the idea Goes Like this we need to map page number and we divide the search into parts
  • say the size was 500
  • Page 1 -> 0-10
  • Page 2 -> 10-20
  • All this time the size is same the query is same all that is changing is from and to word
  • think this way you will only query once and create a hashmap key are page number and value would be sliced Records
In [6]:
res = es.search(
  index = 'netflix',
  size = 100,
  body = myquey)
In [7]:
data = res["hits"]["hits"]
In [17]:
hashmap = {}
In [ ]:
step = 2
hashmap = {}
for i in range(len(data)):
    if i==0:
        hashmap[i] = data[0:step]
    else:
        startIndex = step * i
        EndIndex =  ((i+1) * (step))
        sample = data[startIndex:EndIndex]
        hashmap[i] = sample

Method 3:

  • The approach we are taking here is basically
  • page 1 correspond to from 0
  • page 2 correspond to from 10
  • idea is eevry page keep increment the from varibale

First Time Query Becomes

In [ ]:
myquey = {
   "_source": [],
   "size": 10,
    "from":0
   "query": {
      "bool": {
         "must": [],
         "filter": [
            {
               "exists": {
                  "field": "director"
               }
            }
         ],
         "should": [
            {
               "match_phrase": {
                  "director": "Richard "
               }
            }
         ],
         "must_not": []
      }
   }
}

Secodn Time Query Becomes

In [20]:
myquey = {
   "_source": [],
   "size": 10,
    "from":10,
   "query": {
      "bool": {
         "must": [],
         "filter": [
            {
               "exists": {
                  "field": "director"
               }
            }
         ],
         "should": [
            {
               "match_phrase": {
                  "director": "Richard "
               }
            }
         ],
         "must_not": []
      }
   }
}

Method 4: Search After Query

In [19]:
myquey = {
   "_source": [],
   "size": 10,
   "query": {
      "bool": {
         "must": [],
         "filter": [
            {
               "exists": {
                  "field": "director"
               }
            }
         ],
         "should": [
            {
               "match_phrase": {
                  "director": "Richard "
               }
            }
         ],
         "must_not": []
      }
   }
}
In [21]:
res = es.search(
  index = 'netflix',
  size = 100,
  body = myquey)
In [22]:
def create_scroll(res):
    """
    :param res: json
    :return: string
    """

    try:
        data = res.get("hits", None).get("hits", None)
        data = data[-1]
        score = data.get("_score", None)
        scroll_id_ = data.get("_id", None)
        unique_scroll_id = "{},{}".format(score, scroll_id_)
        return unique_scroll_id
    except Exception as e:
        return "Error,scroll error "
In [23]:
scroll = create_scroll(res)

This is out unique Scroll

In [24]:
scroll
Out[24]:
'0.0,8URc93IB135PBBnB55dH'

Next time we will pass this scroll

In [25]:
score, scroll_id = scroll.split(",")
In [26]:
myquey["search_after"] = [score, scroll_id]
myquey["sort"] = [{"_score": "desc", "_id": "desc"}]

New Query for next page becomes

In [ ]:
new_query ={
   "_source":[

   ],
   "size":10,
   "query":{
      "bool":{
         "must":[

         ],
         "filter":[
            {
               "exists":{
                  "field":"director"
               }
            }
         ],
         "should":[
            {
               "match_phrase":{
                  "director":"Richard "
               }
            }
         ],
         "must_not":[

         ]
      }
   },
   "search_after":[
      "0.0",
      "8URc93IB135PBBnB55dH"
   ],
   "sort":[
      {
         "_score":"desc",
         "_id":"desc"
      }
   ]
}

Now perfrom the search on Elastic search and you will get the result

  • make sure again create a scroll and then next page keep reperating the process

Please Dont Forget to Like and Share the Article if found useful

2 comments:

  1. Pythonist: 4 Ways To Do Pagination Or Scrolling In Elastic Search Tutorials >>>>> Download Now

    >>>>> Download Full

    Pythonist: 4 Ways To Do Pagination Or Scrolling In Elastic Search Tutorials >>>>> Download LINK

    >>>>> Download Now

    Pythonist: 4 Ways To Do Pagination Or Scrolling In Elastic Search Tutorials >>>>> Download Full

    >>>>> Download LINK

    ReplyDelete

Learn How to configure your Spark Session to Join Managed (S3 Table Buckets) and Unmanaged Iceberg Tables | Hands on Labs

test-tble-bucket-joins Learn How to configure your Spark Session to Join Managed (S...