Soumil Nitin Shah¶
Bachelor in Electronic Engineering | Masters in Electrical Engineering | Master in Computer Engineering |
Website : https://soumilshah.herokuapp.com
- Github: https://github.com/soumilshah1995
- Linkedin: https://www.linkedin.com/in/shah-soumil/
- Blog: https://soumilshah1995.blogspot.com/
- Youtube : https://www.youtube.com/channel/UC_eOodxvwS_H7x2uLQa-svw?view_as=subscriber
- Facebook Page : https://www.facebook.com/soumilshah1995/
- Email : shahsoumil519@gmail.com
Method 1:¶
Step 1:¶
In [1]:
try:
import os
import sys
import elasticsearch
from elasticsearch import Elasticsearch
import pandas as pd
print("All Modules Loaded ! ")
except Exception as e:
print("Some Modules are Missing {}".format(e))
Step 2:¶
In [2]:
def connect_elasticsearch():
es = None
es = Elasticsearch([{'host': 'localhost', 'port': 9200}])
if es.ping():
print('Yupiee Connected ')
else:
print('Awww it could not connect!')
return es
es = connect_elasticsearch()
Step 3: Define Query¶
In [3]:
myquey = {
"_source": [],
"size": 10,
"query": {
"bool": {
"must": [],
"filter": [
{
"exists": {
"field": "director"
}
}
],
"should": [
{
"match_phrase": {
"director": "Richard "
}
}
],
"must_not": []
}
}
}
Step 4:¶
Elastic Search¶
- index -> name of the index name
- Scroll -> How long you want the scroll to stay in his case 2m
- Size -> How many records you need in each cycle
- Body-> ELK Query
In [4]:
res = es.search(
index = 'netflix',
scroll = '2m',
size = 10,
body = myquey)
In [5]:
counter = 0
sid = res["_scroll_id"]
scroll_size = res['hits']['total']
scroll_size = scroll_size['value']
# Start scrolling
while (scroll_size > 0):
#print("Scrolling...")
page = es.scroll(scroll_id = sid, scroll = '10m')
#print("Hits : ",len(page["hits"]["hits"]))
# Update the scroll ID
sid = page['_scroll_id']
# Get the number of results that we returned in the last scroll
scroll_size = len(page['hits']['hits'])
#print("Scroll Size {} ".format(scroll_size))
# Do something with the obtained page
counter = counter + 1
print("Total Pages : {}".format(counter))
Method 2:¶
- the idea Goes Like this we need to map page number and we divide the search into parts
- say the size was 500
- Page 1 -> 0-10
- Page 2 -> 10-20
- All this time the size is same the query is same all that is changing is from and to word
- think this way you will only query once and create a hashmap key are page number and value would be sliced Records
In [6]:
res = es.search(
index = 'netflix',
size = 100,
body = myquey)
In [7]:
data = res["hits"]["hits"]
In [17]:
hashmap = {}
In [ ]:
step = 2
hashmap = {}
for i in range(len(data)):
if i==0:
hashmap[i] = data[0:step]
else:
startIndex = step * i
EndIndex = ((i+1) * (step))
sample = data[startIndex:EndIndex]
hashmap[i] = sample
Method 3:¶
- The approach we are taking here is basically
- page 1 correspond to from 0
- page 2 correspond to from 10
- idea is eevry page keep increment the from varibale
First Time Query Becomes¶
In [ ]:
myquey = {
"_source": [],
"size": 10,
"from":0
"query": {
"bool": {
"must": [],
"filter": [
{
"exists": {
"field": "director"
}
}
],
"should": [
{
"match_phrase": {
"director": "Richard "
}
}
],
"must_not": []
}
}
}
Secodn Time Query Becomes¶
In [20]:
myquey = {
"_source": [],
"size": 10,
"from":10,
"query": {
"bool": {
"must": [],
"filter": [
{
"exists": {
"field": "director"
}
}
],
"should": [
{
"match_phrase": {
"director": "Richard "
}
}
],
"must_not": []
}
}
}
Method 4: Search After Query¶
In [19]:
myquey = {
"_source": [],
"size": 10,
"query": {
"bool": {
"must": [],
"filter": [
{
"exists": {
"field": "director"
}
}
],
"should": [
{
"match_phrase": {
"director": "Richard "
}
}
],
"must_not": []
}
}
}
In [21]:
res = es.search(
index = 'netflix',
size = 100,
body = myquey)
In [22]:
def create_scroll(res):
"""
:param res: json
:return: string
"""
try:
data = res.get("hits", None).get("hits", None)
data = data[-1]
score = data.get("_score", None)
scroll_id_ = data.get("_id", None)
unique_scroll_id = "{},{}".format(score, scroll_id_)
return unique_scroll_id
except Exception as e:
return "Error,scroll error "
In [23]:
scroll = create_scroll(res)
This is out unique Scroll¶
In [24]:
scroll
Out[24]:
Next time we will pass this scroll¶
In [25]:
score, scroll_id = scroll.split(",")
In [26]:
myquey["search_after"] = [score, scroll_id]
myquey["sort"] = [{"_score": "desc", "_id": "desc"}]
New Query for next page becomes¶
In [ ]:
new_query ={
"_source":[
],
"size":10,
"query":{
"bool":{
"must":[
],
"filter":[
{
"exists":{
"field":"director"
}
}
],
"should":[
{
"match_phrase":{
"director":"Richard "
}
}
],
"must_not":[
]
}
},
"search_after":[
"0.0",
"8URc93IB135PBBnB55dH"
],
"sort":[
{
"_score":"desc",
"_id":"desc"
}
]
}
Now perfrom the search on Elastic search and you will get the result¶
- make sure again create a scroll and then next page keep reperating the process
Pythonist: 4 Ways To Do Pagination Or Scrolling In Elastic Search Tutorials >>>>> Download Now
ReplyDelete>>>>> Download Full
Pythonist: 4 Ways To Do Pagination Or Scrolling In Elastic Search Tutorials >>>>> Download LINK
>>>>> Download Now
Pythonist: 4 Ways To Do Pagination Or Scrolling In Elastic Search Tutorials >>>>> Download Full
>>>>> Download LINK
residential proxy
ReplyDelete