Monday, July 20, 2020

Using Google Pre Trained Machine Learning Model Mobile Net to find Similar Images and using Jacard Index or Cosine Similarity or Pearson Similarity

Code

Using Google Pre Trained Machine Learning Model Mobile Net to find Similar Images and using Jacard Index or Cosine Similarity or Pearson Similarity

About Myself

  • Hello! I’m Soumil Nitin Shah, a Software and Hardware Developer based in New York City. I have completed by Bachelor in Electronic Engineering and my Double master’s in Computer and Electrical Engineering. I Develop Python Based Cross Platform Desktop Application , Webpages , Software, REST API, Database and much more I have more than 2 Years of Experience in Python

  • Website : http://soumilshah.herokuapp.com/

  • Youtube :https://www.youtube.com/channel/UC_eOodxvwS_H7x2uLQa-svw

Currently i work as a Software Engineer at JobTarget

Step 1:

  • Define Imports
In [1]:
import tensorflow as tf
import tensorflow_hub as hub
import numpy as np
import os
import pandas as pd
import matplotlib.pyplot as plt 
import base64
from PIL import Image
import io
import math 
from math import sqrt


%matplotlib inline

global embed
embed = hub.KerasLayer(os.getcwd())
  • What i have did is i downloaded Google Pre trained Model and Extracted in current working cirectory when you unzip you should see three files Asset | Varibale and file ending with .pb extension
In [2]:
for x in os.listdir("."):
    print(x)
.ipynb_checkpoints
1000010653_3390.jpg
1000010653_3415.jpg
1000010653_3419.jpg
1000010653_3421.jpg
assets
Code.ipynb
imagenet_mobilenet_v2_140_224_feature_vector_4.tar
saved_model.pb
Streamlti.ipynb
variables

Step 2:

Converting the Images to vectors i wrote a simple Helper class that takes a file name and outputs its corresponding Vectors

In [3]:
class TensorVector(object):

    def __init__(self, FileName=None):
        self.FileName = FileName

    def process(self):

        img = tf.io.read_file(self.FileName)
        img = tf.io.decode_jpeg(img, channels=3)
        img = tf.image.resize_with_pad(img, 224, 224)
        img = tf.image.convert_image_dtype(img,tf.float32)[tf.newaxis, ...]
        features = embed(img)
        feature_set = np.squeeze(features)
        return list(feature_set)

Step 2:

  • Whenever i work with Images i always convert Image into base64 as on web usually this is format we use
  • let me show how to convert Image into Base64
In [4]:
def convertBase64(FileName):
    """
    Return the Numpy array for a image 
    """
    with open(FileName, "rb") as f:
        data = f.read()
        
    res = base64.b64encode(data)
    
    base64data = res.decode("UTF-8")
    
    imgdata = base64.b64decode(base64data)
    
    image = Image.open(io.BytesIO(imgdata))
    
    return np.array(image)
In [5]:
plt.imshow(convertBase64("1000010653_3390.jpg"))
Out[5]:
<matplotlib.image.AxesImage at 0x25425504c10>
Converting this Image into vector using pre tarined model
In [6]:
helper = TensorVector("1000010653_3390.jpg")
vector = helper.process()
In [7]:
len(vector)
Out[7]:
1792
  • We just converted Image into Vector using pre trained Model Lets do iot for another image and see the similarity between two Images
In [8]:
plt.imshow(convertBase64("1000010653_3415.jpg"))
Out[8]:
<matplotlib.image.AxesImage at 0x2542307db80>
In [9]:
helper = TensorVector("1000010653_3415.jpg")
vector2 = helper.process()
In [10]:
len(vector2)
Out[10]:
1792
Apply Cosine Similarity
In [17]:
import math
from math import sqrt

def cosineSim(a1,a2):
    sum = 0
    suma1 = 0
    sumb1 = 0
    for i,j in zip(a1, a2):
        suma1 += i * i
        sumb1 += j*j
        sum += i*j
    cosine_sim = sum / ((sqrt(suma1))*(sqrt(sumb1)))
    return cosine_sim

def jaccard_similarity(list1, list2):
    intersection = len(list(set(list1).intersection(list2)))
    union = (len(list1) + len(list2)) - intersection
    return float(intersection) / union

def average(x):
    assert len(x) > 0
    return float(sum(x)) / len(x)

def pearson_def(x, y):
    assert len(x) == len(y)
    n = len(x)
    assert n > 0
    avg_x = average(x)
    avg_y = average(y)
    diffprod = 0
    xdiff2 = 0
    ydiff2 = 0
    for idx in range(n):
        xdiff = x[idx] - avg_x
        ydiff = y[idx] - avg_y
        diffprod += xdiff * ydiff
        xdiff2 += xdiff * xdiff
        ydiff2 += ydiff * ydiff

    return diffprod / math.sqrt(xdiff2 * ydiff2)

similarity

1. Cosine Similarity

In [14]:
print("similarity Cosine : {} ".format(cosineSim(vector, vector2)))
similarity Cosine : 0.6222431779870471 

2. jacard Similarity

In [15]:
print("similarity jacard : {} ".format(jaccard_similarity(vector, vector2)))
similarity jacard : 0.00027909572983533354 

Pearson Similarity

In [18]:
print("similarity Pearson  : {} ".format(pearson_def(vector, vector2)))
similarity Pearson  : 0.49082980853169267 

Euclidean distance

In [23]:
from scipy.spatial import distance
a = tuple(vector)
b = tuple(vector2)
dst = distance.euclidean(a, b)
print("Euclidean distance : {} ".format(dst))
Euclidean distance : 29.570098876953125 

3. Average Similarity

In [19]:
similarity = (jaccard_similarity(vector, vector2) + cosineSim(vector, vector2) + pearson_def(vector, vector2)) / 3
similarity
Out[19]:
0.371117360749525

Learn How to configure your Spark Session to Join Managed (S3 Table Buckets) and Unmanaged Iceberg Tables | Hands on Labs

test-tble-bucket-joins Learn How to configure your Spark Session to Join Managed (S...