Sunday, October 6, 2024

Learn How to Read Hudi Tables on S3 Locally in Your PySpark Environment | Essential Packages You Need to Use

sprksql-2

Learn How to Read Hudi Tables on S3 Locally in Your PySpark Environment | Essential Packages You Need to Use

Define Imports

In [1]:
from pyspark.sql import SparkSession
import os, sys

# Set Java Home environment variable if needed
os.environ["JAVA_HOME"] = "/opt/homebrew/opt/openjdk@11"

HUDI_VERSION = '0.14.0'
SPARK_VERSION = '3.4'

Create Spark Session

In [4]:
SUBMIT_ARGS = f"--packages org.apache.hudi:hudi-spark{SPARK_VERSION}-bundle_2.12:{HUDI_VERSION},org.apache.hadoop:hadoop-aws:3.3.4,com.amazonaws:aws-java-sdk-bundle:1.12.773 pyspark-shell"

os.environ["PYSPARK_SUBMIT_ARGS"] = SUBMIT_ARGS
os.environ['PYSPARK_PYTHON'] = sys.executable

# Spark session
spark = SparkSession.builder \
    .config('spark.serializer', 'org.apache.spark.serializer.KryoSerializer') \
    .config('spark.sql.extensions', 'org.apache.spark.sql.hudi.HoodieSparkSessionExtension') \
    .config('className', 'org.apache.hudi') \
    .config("fs.s3a.prefetch.enable", "false") \
    .config("fs.s3a.experimental.fadvise", "random") \
    .config('spark.sql.hive.convertMetastoreParquet', 'false') \
    .config("spark.hadoop.fs.s3a.access.key", os.getenv("ACCESS_KEY")) \
    .config("spark.hadoop.fs.s3a.secret.key", os.getenv("SECRET_KEY")) \
    .config("spark.hadoop.fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem") \
    .config("spark.hadoop.fs.s3a.endpoint", "https://s3.amazonaws.com") \
    .config("spark.hadoop.fs.s3a.aws.credentials.provider", "com.amazonaws.auth.DefaultAWSCredentialsProviderChain") \
    .getOrCreate()

Read your Hudi tables

In [5]:
path = "s3a://soumilshah-dev-1995/tmp/people/"

df = spark.read.format("hudi") \
    .load(path) 

df.show(truncate=True)
+-------------------+--------------------+------------------+----------------------+--------------------+---+-------+---+-------------------+----+
|_hoodie_commit_time|_hoodie_commit_seqno|_hoodie_record_key|_hoodie_partition_path|   _hoodie_file_name| id|   name|age|          create_ts|city|
+-------------------+--------------------+------------------+----------------------+--------------------+---+-------+---+-------------------+----+
|  20240916192523888|20240916192523888...|                 1|              city=NYC|623018ca-95f1-4c6...|  1|   John| 25|2023-09-28 00:00:00| NYC|
|  20240916192523888|20240916192523888...|                 4|              city=NYC|623018ca-95f1-4c6...|  4| Andrew| 40|2023-10-28 00:00:00| NYC|
|  20240916192523888|20240916192523888...|                 3|              city=ORD|3aa82092-735a-45a...|  3|Michael| 35|2023-09-28 00:00:00| ORD|
|  20240916192523888|20240916192523888...|                 6|              city=DFW|0a806fde-cac6-4bd...|  6|Charlie| 31|2023-08-29 00:00:00| DFW|
|  20240916192523888|20240916192523888...|                 2|              city=SFO|2a1d4681-44f9-4e9...|  2|  Emily| 30|2023-09-28 00:00:00| SFO|
|  20240916192523888|20240916192523888...|                 5|              city=SEA|fc7db0ea-3bc1-46c...|  5|    Bob| 28|2023-09-23 00:00:00| SEA|
+-------------------+--------------------+------------------+----------------------+--------------------+---+-------+---+-------------------+----+

                                                                                
In [ ]:

In [ ]:

In [ ]:

Learn How to configure your Spark Session to Join Managed (S3 Table Buckets) and Unmanaged Iceberg Tables | Hands on Labs

test-tble-bucket-joins Learn How to configure your Spark Session to Join Managed (S...