Sunday, May 26, 2019

Weather Logger Bot with Python (WebScrapping/ Request/scheduling/Database)

Untitled1

Weather Logger Bot with Python (WebScrapping/ Request/scheduling/Database)

Hello welcome to the Blog and in this i am going to teach you about the weather Logger Blog

in my Last videos i taught you how to use my smart Library for weather Data. if you have not watched that video the link can be found here please make sure to watch that video First.

This can be used to Log Data and later on Machine Learning with tensorflow on this data can be done. also data visualization if you want to see when was temperature maximum or when it was too windy etc etc

Step 1: How to use Library

How to use Smart Library

In [1]:
from IPython.display import YouTubeVideo
YouTubeVideo('TyFPn8mEEv0')
Out[1]:

Lets us use this library and make a weather Logger Bot which will log the weather Data every Hour and will store the data on a SQLite3 Database

Step 2: Code

Video can be Found here

In [4]:
from IPython.display import YouTubeVideo
YouTubeVideo('QgyYvnQp40s')
Out[4]:

4 Line and you are Done

In [ ]:
if __name__ == "__main__":
    schedule.every(10).seconds.do(main)
    while True:
        schedule.run_pending()

Entire Library Code

In [ ]:
import json
import requests
import sqlite3
import time
import datetime
import schedule



class Weather(object):
    def __init__(self):
        self.__headers = {
            'Accept-Encoding': 'gzip, deflate, sdch',
            'Accept-Language': 'en-US,en;q=0.8',
            'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36',
            'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
            'Referer': 'http://www.wikipedia.org/',
            'Connection': 'keep-alive',
        }

    def __get_lat_lon(self,zipcode='06604'):

        """
        This is Private class Client dont have Access to this
        :param zipcode: Takes Zip Code
        :return: Lat and Long
        """
        self.__url_zip = 'https://api.promaptools.com/service/us/zip-lat-lng/get/'

        params = {
            'key': '17o8dysaCDrgv1c',
            'zip':zipcode
        }

        r = requests.get(url=self.__url_zip,headers=self.__headers,params=params)
        data = r.json()

        for x in data["output"]:
            return x["latitude"], x["longitude"]

    def weather_get(self,zip='06604'):
        """

        :param zip: Takes Zip code as String
        :return: Weather Information
        """

        lat, long = self.__get_lat_lon(zip)

        data = '{},{}'.format(lat,long)

        self.__url_weather = "https://api.weather.com/v2/turbo/vt1observation"

        params= {
            'apiKey': 'd522aa97197fd864d36b418f39ebb323',
            'format': 'json',
            'geocode': data,
            'language': 'en-US',
            'units':'e'
        }

        r2 = requests.get(url=self.__url_weather,headers=self.__headers,params=params)

        r2_data = r2.json()

        dew_point = r2_data["vt1observation"]["dewPoint"]
        feelsLike = r2_data["vt1observation"]["feelsLike"]
        humidity = r2_data["vt1observation"]["humidity"]
        observationTime = r2_data["vt1observation"]["observationTime"]
        temperature = r2_data["vt1observation"]["temperature"]
        visibility = r2_data["vt1observation"]["visibility"]
        windspeed = r2_data["vt1observation"]["windSpeed"]
        winddegree = r2_data["vt1observation"]["windDirDegrees"]
        winddirection = r2_data["vt1observation"]["windDirCompass"]

        return dew_point, \
               feelsLike, \
               humidity, \
               observationTime, \
               temperature, \
               visibility, \
               windspeed, \
               winddegree, \
               winddirection


def Database(Dewpoint, Feellike, Humidity, Observationtime, Temperature, Visiblity, Windspeed, Winddegree, Winddirection,date, time):

    print("Added to Datbase.........")

    Dewpoint_v = str(Dewpoint)
    Feellike_v = str(Feellike)
    Humidity_v = str(Humidity)
    Observationtime_v = str(Observationtime)
    Temperature_v = str(Temperature)
    Visiblity_v = str(Visiblity)
    Windspeed_v = str(Windspeed)
    Winddegree_v = str(Winddegree)
    Winddirection_v = str(Winddirection)
    date_v = str(date)
    time_v = str(time)


    conn = sqlite3.connect("Weather.db")

    cursor = conn.cursor()

    cursor.execute("""
    CREATE TABLE IF NOT EXISTS weather
    (Dewpoint TEXT,
    Feellike TEXT,
    Humidity TEXT,
    Observationtime TEXT,
    Temperature TEXT,
    Visiblity TEXT,
    Windspeed TEXT,
    Winddegree TEXT,
    Winddirection TEXT,
    date TEXT, 
    time TEXT)""")

    cursor.execute("""INSERT INTO weather 
    (Dewpoint,
     Feellike, 
     Humidity, 
     Observationtime, 
     Temperature, 
     Visiblity, 
     Windspeed, 
     Winddegree, 
     Winddirection,
     date,
     time)
     VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)""", (Dewpoint_v,
                                                   Feellike_v,
                                                   Humidity_v,
                                                   Observationtime_v,
                                                   Temperature_v,
                                                   Visiblity_v,
                                                   Windspeed_v,
                                                   Winddegree_v,
                                                   Winddirection_v,
                                                   date_v,
                                                   time_v))

    conn.commit()
    cursor.close()
    conn.close()

def main():

    w = Weather()

    dewpoint, feellike, humidity, observationtime, \
    temperature, visiblity, windspeed, winddegree, \
    winddirection = w.weather_get(zip='06604')

    t = datetime.datetime.now()
    date = "{}/{}/{}".format(t.month,t.day,t.year)
    time = "{}:{}:{}".format(t.hour,t.minute,t.second)

    Database(dewpoint, feellike, humidity, observationtime,
             temperature, visiblity, windspeed, winddegree,
             winddirection,date,time)
In [ ]:
 

Learn How to configure your Spark Session to Join Managed (S3 Table Buckets) and Unmanaged Iceberg Tables | Hands on Labs

test-tble-bucket-joins Learn How to configure your Spark Session to Join Managed (S...