Saturday, April 10, 2021

Using BERT with Scikit Learn to do Text classification¶

BERT

Using BERT with Scikit Learn to do Text classification

Soumil Nitin Shah

Bachelor in Electronic Engineering | Masters in Electrical Engineering | Master in Computer Engineering |

Excellent experience of building scalable and high-performance Software Applications combining distinctive skill sets in Internet of Things (IoT), Machine Learning and Full Stack Web Development in Python.

Step 1:

Define Imports

In [2]:
try:
    import numpy as np
    import pandas as pd

    import torch
    import transformers as ppb # pytorch transformers
    
    
    from sklearn.linear_model import LogisticRegression
    from sklearn.model_selection import cross_val_score
    
    from sklearn.preprocessing import LabelEncoder
    from sklearn.model_selection import train_test_split
    
    from sklearn.naive_bayes import MultinomialNB
    
    import warnings

    import swifter
    import tqdm
    tqdm.pandas()

    warnings.filterwarnings('ignore')
except Exception  as e: pass

Reading Dataset

In [3]:
df = pd.read_csv('https://github.com/clairett/pytorch-sentiment-classification/raw/master/data/SST2/train.tsv', delimiter='\t', header=None)
df = df.dropna(how='all')
In [7]:
df.head(2)
Out[7]:
0 1
0 a stirring , funny and finally transporting re... 1
1 apparently reassembled from the cutting room f... 0
In [20]:
X = df[0]
Y = df[1]
encoder = LabelEncoder()
Y = encoder.fit_transform(Y)
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.3)
Pre Processing
In [21]:
class BertTokenizer(object):

    def __init__(self, text=[]):
        self.text = text

        # For DistilBERT:
        self.model_class, self.tokenizer_class, self.pretrained_weights = (ppb.DistilBertModel, ppb.DistilBertTokenizer, 'distilbert-base-uncased')

        # Load pretrained model/tokenizer
        self.tokenizer = self.tokenizer_class.from_pretrained(self.pretrained_weights)

        self.model = self.model_class.from_pretrained(self.pretrained_weights)

    def get(self):

        df = pd.DataFrame(data={"text":self.text})
        tokenized = df["text"].swifter.apply((lambda x: self.tokenizer.encode(x, add_special_tokens=True)))

        max_len = 0
        for i in tokenized.values:
            if len(i) > max_len:
                max_len = len(i)

        padded = np.array([i + [0]*(max_len-len(i)) for i in tokenized.values])

        attention_mask = np.where(padded != 0, 1, 0)
        input_ids = torch.tensor(padded)
        attention_mask = torch.tensor(attention_mask)

        with torch.no_grad(): last_hidden_states = self.model(input_ids, attention_mask=attention_mask)
        
        features = last_hidden_states[0][:, 0, :].numpy()

        return features
In [22]:
_instance =BertTokenizer(text=x_train)
tokens = _instance.get()

Model

In [23]:
lr_clf = LogisticRegression()
lr_clf.fit(tokens, y_train)
c:\python38\lib\site-packages\sklearn\linear_model\_logistic.py:762: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
  n_iter_i = _check_optimize_result(
Out[23]:
LogisticRegression()

Test

In [25]:
_instance =BertTokenizer(text=x_test)
tokensTest = _instance.get()

In [26]:
predicted = lr_clf.predict(tokensTest)
In [27]:
np.mean(predicted == y_test)
Out[27]:
0.846820809248555

References

1 comment:

  1. Pythonist: Using Bert With Scikit Learn To Do Text Classification¶ >>>>> Download Now

    >>>>> Download Full

    Pythonist: Using Bert With Scikit Learn To Do Text Classification¶ >>>>> Download LINK

    >>>>> Download Now

    Pythonist: Using Bert With Scikit Learn To Do Text Classification¶ >>>>> Download Full

    >>>>> Download LINK

    ReplyDelete

Learn How to configure your Spark Session to Join Managed (S3 Table Buckets) and Unmanaged Iceberg Tables | Hands on Labs

test-tble-bucket-joins Learn How to configure your Spark Session to Join Managed (S...